Bayesian Networks and Mutual Information for Fault Diagnosis of Industrial Systems
نویسندگان
چکیده
The purpose of this article is to present and evaluate the performance of a new procedure for industrial process diagnosis. This method is based on the use of a bayesian network as a classifier. But, as the classification performances are not very efficient in the space described by all variables of the process, an identification of important variables is made. This feature selection is made by computing the mutual information between each process variable and the class variable. The performances of this method are evaluated on the data of a benchmark problem: the Tennessee Eastman Process. Three kinds of faults are taken into account on this complex process. The objective is to obtain the minimal recognition error rate for these 3 faults. Results are given and compared with results of other authors on the same data.
منابع مشابه
On the use of multi-agent systems for the monitoring of industrial systems
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences su...
متن کاملOnline Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملA New Procedure Based on Mutual Information for Fault Diagnosis of Industrial Systems
The purpose of this article is to present a new procedure for industrial process diagnosis. This method is based on bayesian classifiers. A feature selection is done before the classification between the different faults of a process. The feature selection is based on a new result about mutual information that we demonstrate. The performances of this method are evaluated on the data of a benchm...
متن کاملEstimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks
Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کامل